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Abstract

Many statistical procedures assume the underlying data generating
process involves Gaussian errors. Among the well-known procedures
are ANOVA, multiple regression, linear discriminant analysis and many
more. There are a few popular procedures that are commonly used to
test for normality such as the Kolmogorov-Smirnov test and the Shapiro-
Wilk test. Excluding the Kolmogorov-Smirnov testing procedure, these
methods do not have a graphical representation. As such these testing
methods offer very little insight as to how the observed process devi-
ates from the normality assumption. In this paper we discuss a simple
new graphical procedure which provides confidence bands for a nor-
mal quantile-quantile plot. These bands define a test of normality and
are much narrower in the tails than those related to the Kolmogorov-
Smirnov test. Correspondingly the new procedure has much greater
power to detect deviations from normality in the tails.

Key words: normality test, confidence bands, graphical presentation,
power analysis, quantile-quantile plot
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1 Introduction

To motivate our procedure we first look at two different data sets that were pre-

viously explored. In both examples the researchers were interested in testing

the normality assumption.

The first data series contains monthly log returns of IBM stock from March

1967 to December 2008. This is part of a data set that was examined in

Tsay (2010) and we obtained it from its corresponding website. In Figure 1

we show the time plot for the data and the quantile-quantile plot of the data

with both our proposed Tail-Sensitive (TS) 95% confidence bands and the

Kolmogorov-Smirnov (KS) confidence bands. It is apparent that some of the

points fall outside the TS confidence bands but inside the KS confidence bands.

It is apparent that five points in the left tail fall outside the TS confidence

bands but are well inside the KS confidence bands. Therefore, according to

the TS confidence bands the data do not follow the normal distribution and

the log returns for this stock have a heavier left-tail compared to the normal

distribution. The KS confidence bands do not detect this deviation and as such

the researcher may wrongly conclude that the data are normally distributed.

The second data series contains measurements from experiments that test

the effectiveness of body armors. The data was collected as part of a National

Academies report requested by the US Army Unknown (2012). The Army

wanted to investigate the difference between two methods of assessing how

deep a bullet penetrates ceramic body armor begin tested for approval for use.

In the standard test a cylindrical clay model is layered under the armor vest. A

projectile is then fired against the vest, causing an indentation in the clay. The
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Figure 1: The monthly log returns for IBM stock from March 1967 to December
2008. The upper plot shows the time plot of the data against the time index.
The lower plots shows the 95% Kolmogorov-Smirnov confidence bands and the
corresponding TS confidence bands, respectively.
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deepest impression in the clay is measured as an indication of the survivability

of the soldier using this armor. The traditional method of measuring the

depth of this impression involves using a manually controlled digital caliper. A

more recently-adopted method is to measure the impression using a computer-

controlled laser. The two methods were compared in a calibration experiment

involving a series of test firings measured by each method. Figure 2 shows the

quantile-quantile plot of measurements from the experiments: the upper plots

show the measurements using the digital caliper and the lower plots show the

results using the laser based approach. These plots also present the proposed

Tail-Sensitive (TS) 95% confidence bands and the Kolmogorov-Smirnov (KS)

confidence bands. Based on the KS bands, observations from both methods

are consistent with the normality assumption. However, based on the TS

confidence bands there is a suspicious outlier on the right tail of the caliper-

based measurements. On the laser-based measurements we see two points on

the right tail that fall outside the bands and several suspicious data points on

the left tail that lie on the boarder of the bands. These points indicate that the

data deviate from the normality assumption. Our confidence bands procedure

indicates that if the Army adopts the laser based method it should not rely on

the normality assumption to establish its safety standards.

In the next section we list a few common procedures that are used to test

the normality assumption. We later compare these testing procedures perfor-

mances with our TS procedure.
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Figure 2: Measurements of bullet impressions on a ceramic armor. The upper
plots shows the quantile-quantile plot of measurements taken using the digital
caliper. The lower plots shows the quantile-quantile plot of measurements
taken using the laser-based device. Both plots show the the proposed 95%
TS confidence bands and the corresponding Kolmogorov-Smirnov confidence
bands.
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1.1 Common testing procedures

Several statistics have been proposed to test the assumption of normality with

fixed mean, µ, and variance, σ2. The hypotheses in question can be written as

follows:

H0 : Xi
iid∼ N(µ, σ2) for i = 1, . . . , n (1)

H1 : Xi
iid∼ F for i = 1, . . . , n

where F is a general symbol for any arbitrary continuous CDF different from

those in H0. Until Section 2.3 we concentrate on the basic problem in which

µ, σ2 are specified in advance. Then in Section 2.3 we turn to the more fre-

quently encountered practical problem in which the mean and variance are

not assumed known, and must be estimated from the data. For the case in

which µ, σ2 are known, there is no loss of generality in assuming µ = 0, σ2 = 1,

and we do so when considering this problem. Common testing procedures for

the case with µ, σ2 known rely on some function of the deviation between the

sample cumulative distribution function (CDF), Fn(·), and the normal null

cumulative distribution F0 = Φ(·). We proceed by reviewing a few of the more

common testing procedures.

In 1930 Cramèr and Von Mises (Darling, 1957) presented a procedure to test

the above hypotheses. Their test statistic has the following form:

ωn = n

∫ ∞
−∞

(Fn(t)− F0(t))2dF0(t) (2)
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Since the CDF is a continuous function we can rewrite ωn as follows:

ωn = n

∫ ∞
−∞

(
1

n

n∑
j=1

I[t>Xj ] − F0(t))2dF0(t)

= n

∫ 1

0

(
1

n

n∑
j=1

I[t>F0(Xj)] − t)2dt

where I denotes the indicator function. Faraway and Csorgo (1996) studied

the asymptotic distribution of ωw.

In the late 40s, the popular Kolmogorov-Smirnov test was developed (Feller,

1948). The test statistic, denoted by Bn, is the maximum difference between

the empirical cumulative distribution function and the hypothesized (normal)

cumulative distribution function. Formally, the statistic can be written as:

Bn =
√
n sup
−∞<t<∞

|Fn(t)− F0(t)| (3)

The distribution of Bn was described and tabulated in Kolmogoroff (1941)

and Smirnov (1948). This testing procedure also has a visual representation

using the corresponding confidence bands. This probably contributes to its

popularity among practitioners who use commercial software such as SAS,

STATA and JMP. An example of the visual representation is shown in Figure

1. The KS bands are initially constructed on the uniform scale using the tables

from Smirnov (1948) and then translated to the desired null distribution using

its CDF. For further details on how these bands are constructed the reader

is referred to (DasGupta, 2011). In Lilliefors (1967), the author investigated

7



how to adjust the critical values of Bn when the null hypothesis is the normal

distribution with unknown mean and standard deviation.

A few years later, Anderson and Darling (1954) suggested the following test

statistic

An = n

∫ ∞
−∞

(Fn(t)− F0(t))2

F0(t) · (1− F0(t))
dF0(t). (4)

An measures the weighted average squared deviation between the empirical

CDF and the hypothesized CDF. Its distribution was documented in Anderson

and Darling (1954). Similar to the Kolmogorov-Smirnov test, the Anderson-

Darling statistic, An, behavior was also examined for the case where the pa-

rameters are unknown and tables to compute the adjusted p-values were re-

ported in Stephens (1974). We can view the Anderson-Darling statistic as

a weighted version of the Cramèr-Von-Mises where the weight function is

[F0(t) · (1 − F0(t))]−1. By using this weight function Anderson and Darling

place more emphasis on the deviation at the tails of the distribution.

The An, ωn and Bn tests can be used for any specified null distribution,

not just the normal one. In contrast, Shapiro and Wilk (1965) derived a test

statistic specifically designed to test whether the observed values are generated

from a normal distribution with unknown parameters. Their test statistic takes

the following form

8



Wn =
b2

S2
=

(σ̂ · a)2

S2
where (5)

σ̂ =
mtV −1y

mtV −1m
and

S2 =

∑n
i=1(xi − x̄)

n− 1

where y = [y(1), . . . , y(n)] is the vector of the sample order statistics and

m = [m1, . . . ,mn] and V = (vij) are the corresponding expected values and

covariance matrix of the standard normal order statistics 1. b is, up to a nor-

malizing constant, the estimated slope of the generalized linear regression of

the ordered observations on the expected values of the standard normal order

statistics. Both b and S estimate the population standard deviation, σ, but b

is robust. Wilk and Gnanadesikan (1968) list critical values of Wn for various

sample sizes.

Various studies, for example Stephens (1974), Razali and Wah (2011), show

that the Kolmogorov-Smirnov test is generally the least powerful test among

those previously described, while the Shapiro-Wilk test is generally the most

powerful of the group. The only clear advantage the Kolmogorov-Smirnov test

has versus the other tests is its visual presentation. By visually inspecting the

deviations on this plot, the researcher may be able to better understand and

possibly correct the non-normality in the data by a simple transformation or

might be able to assume some different underlying process.

In the next section we describe our new TS procedure. For most alternatives

1In later computations we use the approximation suggested in Wilk and Gnanadesikan
(1968) to evaluate m and V
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this procedure is approximately as powerful as the Shapiro-Wilk test and can

be depicted in a simple quantile-quantile plot like KS. We also describe how to

apply our method to examine the normal distribution hypothesis but we also

note that the testing procedure can be modified to test any other continuous

distribution.

2 New testing method

In this section we describe in detail our graphical method and the correspond-

ing test. We begin by constructing the 1− α confidence bands for the normal

quantiles. Once these bands are calculated all that remains is to examine if the

quantile plot of the sample order statistics falls within these bands (or outside)

to determine if one retains or rejects the normality assumption.

2.1 1− α Simultaneous confidence bands for fully spec-

ified null distributions

To test whether n observations, x1, . . . , xn, are normally distributed with

known mean, µ0, and standard deviation, σ0, we first standardize the obser-

vations to have mean 0 and standard deviation of 1 (i.e. use zi = xi−µ0
σ0

). We

then construct the following TS confidence bands and confirm if the quantile-

quantile plot of the normalized sample zi, falls entirely inside the confidence

bands.

We construct the TS confidence bands using the uniform distribution and

then invert them to the normal distribution scale by using the inverse standard

10



normal CDF, Φ−1()̇. Forming the appropriate confidence bands for the uniform

distribution requires two steps:

1. Build individual 1 − γ confidence intervals for each of the quantiles of

the uniform distribution.

2. Adjust the confidence level, γ, to account for multiplicity in order to form

1 − α coverage simultaneous confidence bands. Establishing the exact

γ is very difficult and therefore we use simulated data to determine it.

In principle, this can be done by sequentially choosing values of γ until

the desired accuracy has been achieved. With this scheme, for each

choice of γ one needs to simulate from the uniform distribution in order

to determine with desired accuracy the value of simultaneous coverage

achieved when using that value of 1−γ as the individual coverage value.

Then successive values of γ are chosen until the coverage bands have

simultaneous coverage 1 − α to within the desired numerical accuracy.

This scheme achieves simultaneous confidence bands that are accurate

to within any desired statistical accuracy. But it is computationally

inefficient because it requires repeated large simulations in order to reach

the final value of γ. Therefore we use an alternative, more efficient,

method to establish the desired γ. This alternative method is equivalent

to the initial idea but circumvents the need for the incremental search.

We will detail this method in Section 2.1.

Step 1 establishes the shape of the confidence bands while Step 2 ensures that

the bands correspond to a size α test. As a final step, we apply the inverse

normal CDF to obtain bounds for the normal QQ plot. Here are the details

11



for the computational algorithm:

Step 1: Individual confidence intervals Assume Y1, . . . , Yn are n indepen-

dent identically distributed standard uniform random variables. Sort

them from the smallest to largest to obtain the order statistics, Y(i).

From elementary probability theory, Y(i) follows a Beta distribution with

shape parameters α = i and β = n− i+ 1 which we denote by G(i,n+1−i).

This last fact allows us to construct a 1− a level confidence interval for

the ith order statistic. Choose the Beta quantiles such that P (Li(γ) ≤

Y(i) ≤ Ui(γ)) ≥ 1 − a. A simple choice is the equal-tail quantiles, i.e.

Li(γ) = G−1
(i,n+1−i)(

γ
2
) and Ui(γ) = G−1

(i,n+1−i)(1−
γ
2
).

Step 2: Confidence bands The set of individual confidence intervals allows

us to make inference on each order statistic, Y(i), separately. These con-

fidence bounds, however, do not ensure a simultaneous 1− α confidence

band. Therefore, we need to modify these individual confidence lim-

its in order to achieve bands with an expected coverage of 1 − α. We

propose to chose γ so that P (Li(γ) ≤ Y(i) ≤ Ui(γ),∀i) ≈ 1 − α. To

this end we simulate data sets from the uniform distribution and find

the smallest two-sided p-value for each of the simulated data sets, i.e.

Cm = min1≤i≤np
m
i . We then proceed by finding the α · 100%-percentile

over [C1, C2, . . . , CM ] and adjust the confidence intervals in Step 1 ac-

cording to this value. The procedure guarantees that only α% of the data

sets lie outside the confidence bands and therefore meets the requirement

for an α size test. The following algorithm describes the method:

12



1. Simulate M samples each having n observations from the standard

uniform distribution. In all our examples we use M = 5, 000. Define

Y m
(i) as the ith order statistic in the mth simulated sample for i =

1, . . . , n and m = 1, . . . ,M .

2. For each i = 1, . . . , n andm = 1, . . . ,M calculateAmi = G−1
(i,n+1−i)(Y

m
(i)).

3. For each i = 1, . . . , n andm = 1, . . . ,M calculate pmi = 2·min(Ami , 1−

Ami ) under the null Beta distribution. pmi indicates the significance

level of Y m
(i) relative to the corresponding Beta distribution.

4. For each simulated sample find the smallest significance value asso-

ciated with it, i.e. for m = 1, . . . ,M find Cm = min1≤i≤np
m
i .

5. Among [C1, C2, . . . , CM ], find the α · 100%-percentile. Denote this

value by Cα. Adjust the individual confidence interval constructed

in Step 1 using γ = Cα.

6. Finally, for testing normality, we use the inverse normal cumulative

distribution function, Φ−1(·) to transform the simultaneous uniform

confidence bands to the corresponding standard normal confidence

bands.

It can easily be verified that this algorithm yields bounds that achieve

P (Li(γ) ≤ Y(i) ≤ Ui(γ),∀i) ≈ 1 − α except for simulation error. Indeed,

by construction, among the M simulated samples [(1 − α) ·M ] have Li(γ) ≤

Y m
(i) ≤ Ui(γ),∀i.

The R function that creates the TS confidence bands is available online at

http://www-stat.wharton.upenn.edu/ sivana/QConBands.r. It takes about 2

seconds to produce results based on M = 1000 simulations for sample size

13
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n = 100 and α = 0.05. Throughout the code we make use of the quicksort

algorithm and the standard sampling method in R to simulate from the Uni-

form distribution. One can think of better sampling and/or sorting algorithms

to try and improve the computational efficiency of the proposed method. We

leave these improvements for future research. Next we investigate the shape of

the resulting TS confidence bands and compare them with the KS confidence

bands.

2.1.1 The TS confidence bands

To illustrate the results of the TS procedure we first examine the confidence

bands on the uniform scale (before the inverse normal transformation is ap-

plied). Figure 3 demonstrate the simultaneous 95% confidence bands for a

sample size of n = 100. The bands are football shaped (narrower at the

extremes) which is to be expected since we set quantiles from a Beta distri-

bution. Y(1) and Y(n) have a variance of n
(1+n)2·(2+n)

while the median, Y(n/2)

has the higher variance of 1
4·(1+n)

. Also, the distributions of Y(1) and Y(n) are

highly skewed to the right and left respectively while that of Y(n/2) is sym-

metric unimodal distribution. Therefore the resulting confidence bands are

not symmetric. The plot also shows the 95% Kolmogorov-Smirnov confidence

bands which form two parallel lines around the 45 degree line.

Figure 3 reveals that the Kolmogorov-Smirnov bands are especially wide

at the tails of the distribution. In fact, the Kolmogorov-Smirnov confidence

bands need to be truncated to be between the values of 0 and 1 (since the

standard uniform distribution cannot exceed these values). The TS bands

never reach beyond these boundaries. The consequence of this difference is

14
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Figure 3: The 95% TS confidence bands versus the corresponding KS confi-
dence bands (dash).

that the Kolmogorov-Smirnov bands generally produce a less powerful test

compared to the TS bands. The difference in form and performance between

the TS and KS bands, and corresponding tests, becomes much clearer when

we discuss their use for testing normality in the following section.

2.2 Comparison of the normal TS and the KS confi-

dence bands

The best way to clarify the strength and weakness of the KS and TS confidence

bands is by looking at some plots. Figure 4 shows the 95% TS confidence bands

versus the KS confidence bands for n = 50, 100, 1000. As this figure reveals,

compared to the KS test, the suggested TS confidence bands are considerably

tighter at the tails of the distribution. By contrast, Figure 5 zooms in on axes

15



values in the central region between [−1, 1]. These two figures show that even

though we have tightened the bands at the ends we do not sacrifice much of

their width in the center of the distribution.

To further understand the difference between the two test procedures we look

at the locations where the tests falsely reject the null hypothesis. By locations

we are referring to the quantiles and the frequency in which they lie outside the

confidence bands. To examine this we simulate T = 50, 000 random samples

from the standard normal distribution and record whether either of the tests

falsely rejects the null hypothesis. If a sample is rejected by one of these tests

then the quantile positions where the sample exceeds the bands are recorded.

Figure 6 shows the histogram of the locations where the test is rejected for

each of the two testing procedures for sample sizes n = 100 and n = 1000.

The histograms that correspond to the KS reveal a unimodal symmetric shape

while the normal TS histograms resemble the uniform distribution. These

imply that the KS test is more likely to reject based on deviations in the

center of the null distribution than deviations in the tails while the TS test

rejects whether the deviations are at the tails or center of the null distribution.

The results in Figure 6 also suggest why the TS procedure performs better

than the KS test against common non-normal alternatives. Typically, when

suitably scaled and centered, such alternatives have nearly normal behavior

near their center but deviate from normality in the tails. Figure 6 suggests

that TS is more sensitive in the tails of the distribution than the KS test. We

especially see the difference between the two procedures when the alternatives

are symmetric but heavier tailed compared to a normal distribution. In section

3 we conduct a simulation study to investigate the power of these tests and

16
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Figure 4: The 95% TS confidence bands versus the corresponding KS confi-
dence bands (dash).
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Figure 5: Zoomed-in plots of the 95% TS confidence bands versus the corre-
sponding KS confidence bands (dash). These plots focus on the center of the
domain and show the two tests are nearly identical over that range.
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show that the KS test is less powerful in detecting symmetric heavier tailed

alternatives.

2.3 Testing distributions with unknown parameters

The algorithm described in Section 2.1 is only relevant when the null distri-

bution is fully specified. However, in many applications the researcher only

knows the underlying distribution’s family but not its population parameters.

This uncertainty in the parameters needs to be reflected in the confidence

bands since not knowing the parameters adds another source of variability to

the problem.

We will now demonstrate how our procedure can be modified to handle a

situation when the parameters are not pre-specified. We will use the nor-

mal distribution as an example for our null distribution but as we previously

mentioned, this procedure can be easily modified to handle other families of

continuous distributions.

2.3.1 Confidence bands in the case of unknown parameters

To test whether n observations, x1, . . . , xn, are normally distributed with un-

known parameters we first estimate the population mean and standard devi-

ation using the pair of estimators (µ̃, σ̃), respectively. We discuss desirable

choices for (µ̃ and σ̃) in Section 4. We proceed by normalizing the sample

by letting zi = xi−µ̃
σ̃

. Then we create the relevant confidence bands using a

modified version of the procedure previously described and apply these to the

quantile-quantile plot of the normalized sample zi. Finally, if one or more of
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Figure 6: The histograms for the locations where the KS and TS tests falsely
reject the null hypothesis. The left panel histograms (blue) correspond to a
sample size of n = 100 and the right panel histograms (black) correspond to a
sample size of n = 1000.
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the zi’s lie outside the TS confidence bands we reject the null and conclude

that the observed values are not normally distributed. The steps required to

construct the confidence bands are similar to the ones described in Section 2.1

with the exception of the first step. We replace the first step with the following

three:

1. Simulate M samples each having n observations from the standard nor-

mal distribution.

2. Normalize each of the samples using estimates for the mean, µ̂, and the

standard deviation, σ̂, i.e. zi = xi−µ̂
σ̂

. For example, we may use the

maximum likelihood estimators µ̂ = x̄ and σ̂ =
√∑n

i=1(xi−x̄)

n
. Let Zm

(i)

be the ith order statistic in the mth simulated normalized sample for

i = 1, . . . , n and m = 1, . . . ,M .

3. Convert the order statistic to the uniform scale using the normal distri-

bution CDF. In other words, let Y m
(i) = Φ(Zm

(i))

These three steps require simulating from the standard normal distribution

and normalizing these simulated samples. They are necessary steps to main-

tain the desired α-level significance value. In the case where the parameter

of the normal distribution were known, we could simply simulate from the

standard uniform distribution which allowed us to construct the entire test on

the uniform scale and later translate the confidence bands back to the desired

normal scale using the appropriate CDF. However, in the case of unknown

parameters, we need to account for the uncertainty in parameters when we

calculate the confidence bands and these two steps allow us to do so.
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3 Power Analysis

We use simulations studies to investigate the behavior of our testing proce-

dure. More specifically, we examine the power of our procedure by calculating

the percentage of times our testing procedure rejects the normal null distri-

bution given that the simulated data is generated according to the alternative

distribution.

We study the power of the TS testing procedure under two scenarios: (i)

the mean µ and the standard deviation σ are pre-specified and known. (ii)

the mean and the standard deviations are unknown. In the first scenario, we

employ the confidence bands described in 2.1 and for the second we use 2.3 to

construct the appropriate confidence bands.

To study the power of the TS test procedure we set the significance level

to 5% and n = 100. We choose alternative distributions that were previously

studied in similar power studies in Wilk and Gnanadesikan (1968) and Rogers

and Tukey (1972). Table 1 lists the alternative distributions most of which are

either skewed or heavy tailed.

Although we only present the results for sample size n = 100 we have con-

ducted similar studies with sample size ranging between n = 20 and n = 1000

and the general pattern of results holds throughout the different sample sizes.

3.0.2 Known mean and standard deviation

The procedure detailed in 2.1 assumes the parameters of the normal distribu-

tion are known. In this section, we use the theoretical mean and standard

deviations of each of the alternative distributions listed in 1 to normalize
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Alternative Distribution TS test KS test AD test
Log Normal 1.000 1.000 1.000
χ2(1) 1.000 1.000 1.000
χ2(5) 0.953 0.346 0.496
χ2(100) 0.089 0.056 0.065
T(4) 0.498 0.136 0.187
Logistic 0.186 0.053 0.046
Poisson(λ = 15) 0.192 0.214 0.076
Uniform(1,18) 0.813 0.614 0.727
Laplace(µ = 0, b = 50) 0.486 0.244 0.228
Norm Mix1 µ1 = µ2 = 0, σ1 = 1, σ2 = 10, p = 0.001 0.112 0.042 0.079
Norm Mix2 µ1 = µ2 = 0, σ1 = 2, σ2 = 1, p = 0.1 1.000 0.758 0.996
Slash σ = 1, a = 0.5, b = 0.9 0.1 0.047 0.047
Wild a = 12, p = 0.1 0.095 0.059 0.054

Table 1: Power analysis at nominal level α = 0.05 for n = 100. The bold-
face numbers in each row show the largest power against the given alternative
distribution. The SE range between 0.0000 and 0.0168.

the sample. We compare the performance of the TS testing procedure to

the Kolmogorov-Smirnov (KS) and the Anderson-Darling (AD) tests, both of

whom originally require the mean and standard deviation to be known. We

set all three procedures to a α = 0.05 significance level and it can be shown

that all of them approximately achieve the desired size.

Table 1 and Figure 7 summarize the power analysis results. As can be

seen, our procedure generally outperforms both the KS and AD tests. The

improvement is most apparent in the heavy tailed distributions such as χ2(30),

t(2), Laplace and the first Normal mixture. We also see an advantage using

this test when the distributions are skewed such as χ2(5). Interestingly enough,

all three tests have a hard time distinguishing between the normal distribution
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2
1)) where µ1 = EF1(X) and

σ2
1 = EF1(X − µ1)2.

and the Wild 2, Slash 3 and one of the Normal mixtures 4 distributions that are

studied. Morgenthaler and Tukey (1991) referred to these three distributions

as the corner distributions and used them to model extreme behavior in data.

These are all distributions that are symmetric but heavier tailed compared

to a normal distribution. However, they are not as heavy tailed as a Cauchy

distribution and as such they may be harder to distinguish from the normal

distribution. We can see that in the Normal mixture distributions the test can

distinguish easily when the mixture probability is 10% and not as well when

that probability is low. We experimented with different values for p and the

standard deviations σ1 and σ2; it seems that the power goes down significantly

2f(x) = x
(b−a)·

√
2·π · (e

x·a2
2 − e x·b

2

2 )
3f(x) = (1− p) · φ(x) + p · 1

2·
√
a
· 1x∈[−√a,√a]

4f(x) = (1− p) · 1√
2πσ2

1

· e
− (x−µ1)2

2σ21 + p · 1√
2πσ2

2

· e
− (x−µ2)2

2σ22
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when the mixture probability p goes down and is far less sensitive to small

changes in σ1 and σ2 (for a fixed p).

4 Unknown parameters power analysis

As we previously discussed, the procedure detailed in 2.1 assumes the param-

eters of the normal distribution are known. However, most applications do

not have known parameters values and therefore require the use of estimated

values instead.

The key issue is to chose wisely the parameter estimates that will allow us

to best tell apart scenarios where the underlying distribution is normal from

other distributions. In other words we are interested in testing the following

hypotheses:

H0 : Xi ∼ N(µ, σ2) for i = 1, . . . , n (6)

H1 : Xi ∼ F1 for i = 1, . . . , n

where µ and σ are unknown and F1 denotes a continuous distribution different

from the normal distribution. Particularly, we would like our procedure to

effectively distinguish between the normal distribution and similar symmetric

distributions that are heavier tailed. Pictorially this means that if the data

follows a normal distribution then we simply need to adjust the intercept

(location) and slope (scale) of the quantile-quantile line such that all of its

points fall within the bands (1 − α)100% of the time. However, if the data

does not follow a normal distribution it will be more difficult (probabilistically
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speaking) to find a pair of location and scale estimators that will produce a

quantile-quantile line that is entirely contained in the confidence bands.

There are a few standard suggestions as to how one might go about estimat-

ing the mean and standard deviation of the normal distribution. An obvious

choice is to use the standard maximum likelihood based estimators (MLE):

µ̆ = x̄ =

∑n
i=1 xi
n

σ̆ =

√∑n
i=1(xi − x̄)2

n− 1

which are simply the sample mean and the sample standard deviation. Al-

though this choice of estimators seems the most reasonable under the null

distribution it does not guarantee the most powerful testing procedure against

the alternatives that we are interested in detecting. Therefore we also explore

more robust estimators for the location and scale that allow us to both main-

tain the appropriate significance level but will be more powerful in detecting

heavier tailed distributions.

A more robust alternative is to use the median, m(x) and the median abso-

lute deviation (MAD)

mad(x) = m(|x−m(x)|) · 1.4826

Lloyd (1952) suggested using the following generalized least-squares estimators
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based on the order statistics

µ̃ = x̄

σ̃ =
mtV −1y

mtV −1m

In this case, the estimator of the standard deviation σ is the robust scale

estimator that Shapiro and Wilk (1965) used to construct the numerator for

their statistic, as referred to in (5).

In Croux and Rousseeuw (1993) the authors proposed an alternative robust

estimator for the scale. Their estimator, denoted by Qn, is a robust estimator

but is both a more efficient estimator than the MAD and it does not rest on

an underlying assumption of symmetry like the MAD. Qn is defined as

σ̃RC = 2.219144 · {|xi − xj|; i < j}(0.25)

where {·}(0.25) denotes the 0.25 quantile of the pair distances {|xi−xj|; i < j}.

We pair the Qn estimate with the median, m(x), as the location estimate as

recommended by these authors.

All of the options listed above are estimators of location and scale and we

would like to advise the researcher which one to use based on power analysis.

We compare the power of our method under four different alternatives:

1. Using the biased-adjusted maximum likelihood estimators (MLE)

2. Using the median and MAD (MM)

3. Using the generalized least squares estimators suggested by Lloyd (GLS)
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Alternative MLE MM GLS Qn SW LI CVM AAD
Distribution
Log Normal 1.000 1.000 1.000 1.000 1.000 1.000 0.908 0.959
χ2(1) 1.000 1.000 1.000 1.000 1.000 1.000 0.970 0.997
χ2(5) 0.991 0.917 0.987 0.994 0.996 0.895 0.965 0.983
χ2(100) 0.136 0.085 0.132 0.261 0.146 0.105 0.106 0.110
T(4) 0.701 0.701 0.694 0.846 0.712 0.490 0.608 0.643
Logistic 0.345 0.302 0.331 0.528 0.317 0.149 0.217 0.253
Poisson(λ = 15) 0.340 0.300 0.315 0.616 0.279 0.626 0.369 0.363
Uniform(1,18) 0.869 0.853 0.811 0.971 0.991 0.587 0.826 0.936
Laplace (µ = 0, b = 50) 0.745 0.848 0.728 0.950 0.811 0.712 0.835 0.839
Norm Mix 1 0.112 0.091 0.106 0.253 0.099 0.078 0.079 0.082
Norm Mix 2 0.056 0.059 0.044 0.188 0.051 0.047 0.040 0.038
Slash 0.138 0.111 0.118 0.293 0.115 0.080 0.085 0.088
Wild a = 12, p = 0.1 0.115 0.132 0.100 0.309 0.082 0.071 0.081 0.090

Table 2: Power analysis with unknown parameters. The bold-faced number in
each row indicates the highest power against the listed alternative distribution.
The SE based on simulation range between 0.0000 and 0.0162.

4. Using Qn and the median as suggested by Rousseeuw and Croux (Qn)

We compare our method performance using the above listed options with

the following more common testing procedures:

5. the Shapiro-Wilk (SW)

6. the Lilliefors test (LI)

7. the Cramèr-Von-Mises (CVM)

8. an adjusted (for unknown parameters) Anderson-Darling test (AAD)

The outcomes of the power analysis are listed in Table 2 and presented in

Figure 8. These results indicate that one should use the pair of median and

Qn to estimate the location and scale parameters. In general our procedure

with this choice of location and scale estimator performs at least as well as the

Shapiro-Wilk testing procedure (if not better). It is interesting to notice that
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2
1)) where µ1 = EF1(X) and

σ2
1 = EF1(X − µ1)2.

the our method performs relatively well in Tukey’s three corner distributions.

It seems that even if we knew the true location and scale parameters the

power would still be lower than if we use the Qn and median estimators. One

explanation as to why this is the case is that the standard deviation is not the

appropriate scaling factor for these distributions. The standard deviation in

these situations is too sensitive to the heavy tails of the distributions.

5 Discussion

The TS procedure introduces an attractive alternative to the commonly used

KS testing procedure. It offers a visual method in combination with the classi-

cal normal quantile-quantile plot. The confidence bands for this procedure also

yield a test whether an observed sample follows a normal distribution. Most
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testing procedures can distinguish well between the normal distribution and

non-symmetric or symmetric very heavy tailed distributions. However, they

under-perform when asked to tell apart a normal distribution from a mild

heavy tailed symmetric distribution. The TS procedure performs reasonable

well even for such alternatives.

We explore the performance of this procedure both when the parameters of

the normal distribution are fully specified and when they are not a-priori avail-

able. The proposed procedure can be modified to handle other fully specified

null continuous distributions. Future research may explore the power of this

procedure for distributions other than the normal distribution.

Whether or not we know the parameters of the normal distribution, our

procedure requires a separate calculation for each pair of significance level

α and sample size n. A natural question is whether for a given significance

level α there exists a closed-form equation of the form Cα√
n

to calculate the

margin of error around the 45 degree line as n grows. Our motivation for

exploring such an equation is because the KS confidence bands exhibit such

a limiting behavior and its Cα values have been previously listed in Smirnov

(1948). This simple asymptotic behavior is part of its appeal. After careful

consideration that is detailed in the supplementary material, we conclude that

our procedure does not have a limiting behavior similar to the KS test. Instead,

our procedure’s margin of error grows at a rate of O( log(log(n))√
n

) as n increases

for a given significance level α. This rate, of course, is very slow and almost

behaves like a constant for large values of n.

Finally, the proposed TS testing procedure is designed to handle independent

identically distributed samples. However, there are applications that require
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a relaxation of these assumptions. One such example in the linear regression

where the quantile-quantile plot is often used to determine whether the sam-

ple residuals follow a normal distribution. Since the sample residuals in an

ordinary least squares regression are neither independent nor homoscedastic

our procedure will not strictly apply. One can use the studentized residuals

to adjust for the hetroscedasticity issue however the TS procedure will still

need to be modified to account for the dependence between these residuals.

We leave this modification to be further studied in future research.
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